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Abstract: Discretization algorithms for solving semi-infinite minimax problems replace the original prob-

lem by an approximation involving the maximization over a finite number of functions and then solve the

resulting approximate problem. The approximate problem gives rise to a discretization error and its solution

results in an optimization error as a minimizer of that problem is rarely achievable with a finite computing

budget. Accounting for both discretization and optimization errors, we determine the rate of convergence

of discretization algorithms as a computing budget tends to infinity. We find that the rate of convergence

depends on the class of optimization algorithms used to solve the approximate problem as well as the policy

for selecting discretization level and number of optimization iterations. We construct optimal policies that

achieve the best possible rate of convergence and find that under certain circumstances the better rate is

obtained by inexpensive gradient methods.
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1 Introduction

In many applications such as investment portfolio allocation, engineering design, and policy

optimization, decision makers need to determine a best course of action in the presence of

uncertain parameters. One possibility for handling these situations is to formulate and solve

“robust” optimization models where the optimal decision is determined in view of worst-case

parameter values. We refer to [1–3] for an overview of recent developments. In this paper,

we consider robust optimization models in the form of the semi-infinite minimax problem

(P ) min
x∈X

ψ(x),
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whereX = Rd or a simple closed convex subset of Rd (for example a polyhedron), ψ : Rd → R
is defined by

ψ(x)
△
= max

y∈Y
ϕ(x, y), (1)

Y is a compact subset of Rm, ϕ : Rd × Rm → R, and ϕ(·, ·) is as smooth as required by the

applied algorithm in its first argument and Lipschitz continuous in its second argument. We

refer to m as the uncertainty dimension.

There are numerous algorithms for solving (P ) such as exchange algorithms, local reduc-

tion algorithms, smoothing methods, and discretization algorithms; see for example [4–7],

[8, Chapter 3], and [1, Chapter 2]. When ψ(·) is convex, bundle and (sub)gradient meth-

ods also apply [9, 10]. Discretization algorithms is an attractive class of algorithms due to

their simplicity, sound theory, and the need for few assumptions. These algorithms con-

struct an approximation of (P ) by replacing Y by a subset of finite cardinality and then

(approximately) solving the resulting finite minimax problem using a suitable optimization

algorithm. Since the maximization over y ∈ Y is replaced by maximization of a finite number

of scalars, restrictive assumptions such as concavity of ϕ(x, ·) for all x ∈ X and convexity

of Y are avoided. Of course, if the uncertainty dimension is high, discretization may be

impractical. Discretization algorithms are therefore mainly applied to problem instances

with small uncertainty dimensions as often encountered in engineering design, where the

uncertain parameter(s) may be time, frequency, and/or temperature; see for example [11]

and references therein. Under the assumption that ϕ(·, y) is (twice) continuously differen-

tiable for all y ∈ Y and X is simple, the finite minimax problem can be solved by standard

nonlinear programming algorithms as well as specialized algorithms; see for example [11, 12].

Some discretization algorithms involve constructing and solving a sequence of finite minimax

problems with increasing level of discretization (see for instance [8, Section 3.4]), but in this

paper we focus on algorithms based on the solution of a single finite minimax problem.

It is well-known that given a suitable discretization of Y and relatively mild assump-

tions, global and local minimizers as well as stationary points of the finite minimax problem

converge to corresponding points of (P ), as the level of discretization grows to infinity; see

for example [8, Chapter 3] and [13]. The rate of convergence of global minimizers is of order

O(ρ
1/p
N ), where ρN is the meshsize of a discretization of Y using N discretization points and

p is a growth parameter [13]; see also [14]. The rate is improved under additional assump-

tions on the set of maximizers in (1) at an optimal solution of (P ) [13]. The importance of

including boundary points of Y in the discretization and the resulting rate of convergence as

N tends to infinity is discussed in [14]. While these results provide important insight, they

do not consider the computational work required to solve the finite minimax problem.

The apparent simplicity of discretization algorithm hides a fundamental trade-off be-

tween the level of discretization of Y and the computational work required to approximately

solve the resulting finite minimax problem. One would typically require a fine discretization

of Y to guarantee that the finite minimax problem approximates (P ), in some sense, with
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high accuracy. However, in that case, the finite minimax problem becomes large scale (in the

number of functions to maximize over) and the computational work to solve it may be high

[11, 12]. A coarser discretization saves in the solution time of the correspondingly smaller

finite minimax problem at the expense of a poorer approximation of (P ). It is often difficult

in practice to construct discretizations of Y that balances this trade-off effectively.

In this paper, we examine the rate of convergence of a class of discretization algorithms as

a computing budget tends to infinity. We show that the policy for selecting discretization level

of Y relative to the size of the available computing budget influences the rate of convergence

of discretization algorithms. We identify optimal discretization policies, in a precisely defined

sense, for discretization algorithms based on finitely, superlinearly, linearly, and sublinearly

convergent optimization algorithms for solving the resulting finite minimax problems. We

also construct an optimal discretization policy for the case when the finite minimax problem

is solved by an exponential smoothing algorithm, where the level of smoothing must be

determined too.

Other than [13, 14], there are few studies dealing with rate of convergence of discretiza-

tion algorithms. For a class of adaptive discretization algorithms, where a sequence of finite

minimax problems are solved with gradually higher and adaptively determined levels of dis-

cretization, [15, 16] show that suitable rules for selecting the levels of discretization lead

to a rate of convergence, as the number of iterations tends to infinity, that is identical to

the rate of convergence of the algorithm used to solve the finite minimax problems. Con-

sequently, loosely speaking, the number of iterations required to achieve a certain tolerance

when solving (P ) is the same as that when solving a finite minimax problem obtained from

(P ) by discretization. The computational work in each iteration, however, may grow rapidly

as successively finer discretization levels, and consequently larger finite minimax problems,

must be considered in the adaptive discretization algorithm. To our knowledge, there are

no studies that attempt to quantify the rate of convergence of discretization algorithms for

semi-infinite minimax problems in terms of a computing budget, accounting for both the

number of iterations and the work in each iteration.

An alternative to discretization algorithms is an approach based on algorithm imple-

mentation. Here an existing optimization algorithm, which when applied to (P ) may involve

conceptual step such as finding y∗ ∈ argmaxy∈Y ϕ(x, y), is “implemented” by replacing the

conceptual steps with approximations. The ϵ-subgradient method for (P ) is an example of

an algorithm implementation of the subgradient method under convexity-concavity assump-

tions. The implementation of (fast) gradient methods for problem instances where function

and gradient evaluations cannot be carried out exactly is discussed in [10]. That study iden-

tifies the “best” gradient method for (P ) under assumptions about the computational cost

of reducing the evaluation error, the convexity in the first and concavity in second argument

of ϕ(·, ·), convexity of X and Y , and the use of specific gradient methods.

Rate of convergence analysis in terms of a computing budget is common in other areas

such as Monte Carlo simulation and simulation optimization; see [17] for a review. In those
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areas, given a computing budget, the goal is to optimally allocate it across different task

within the simulation and to determine the resulting rate of convergence of an estimator

as the computing budget tends to infinity. The allocation may be between exploration

of new points and estimation of objective function values at known points as in global

optimization [18, 19] and stochastic programming [20, 21], between estimation of different

random variables nested by conditioning [22], or between performance estimation of different

systems as in ranking and selection [23]. Even though these studies deal with rather different

applications than semi-infinite minimax problems, they motivate the present paper. The

present paper is most closely related to the recent paper [21], where the authors consider

the sample average approximation approach to solving stochastic programs. That approach

replaces an expectation in the objective function of the stochastic program by a sample

average and then proceeds by solving the sample average problem using an optimization

algorithm. They consider sublinearly, linearly, and superlinearly convergent optimization

algorithms for solving the sample average problem, determine optimal policies for allocating

a computing budget between sampling and optimization, and quantify the associated rate of

convergence of the sample average approximation approach as the computing budget tends

to infinity. The present paper has the same goals, but in the context of semi-infinite minimax

problems. Our treatment of sublinear, linear, and superlinear optimization algorithms for

solving the finite minimax problems is similar to the parallel development in [21], but is

carried out with different assumptions. The conclusions are naturally somewhat different.

We also deal with exponential smoothing algorithms for solving the finite minimax problem,

a topic not relevant in the case of stochastic programming.

The next section presents the finite minimax problem corresponding to (P ) and asso-

ciated assumptions. Section 3 considers finite, superlinear, linear, and sublinear algorithms

for solving the finite minimax problem and determines optimal discretization policies with

corresponding rates of convergence as the computing budget tends to infinity. Section 4

deals with the solution of the finite minimax problem by exponential smoothing algorithms,

constructs an optimal discretization and smoothing policy, and determines the correspond-

ing rate of convergence as the computing budget tends to infinity. The paper ends with

concluding remarks in Section 5.

2 Discretization and Assumptions

Discretization algorithms for solving (P ) replace Y by a finite subset YN ⊂ Y of cardinality

N ∈ N △
= {1, 2, 3, ...} and approximately solve the resulting finite minimax problem

(PN) min
x∈X

ψN(x),

where ψN : Rd → R is defined by

ψN(x)
△
= max

y∈YN

ϕ(x, y).
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Clearly, when ϕ(·, y) is smooth for all y ∈ YN , (PN) is solvable by numerous nonlinear

programming and finite minimax algorithms; see for example [11, 12].

The relationship between ψ(·) and ψN(·) depends on the properties of ϕ(·, ·) and YN .

We adopt the following assumption.

Assumption 1. We assume that the following hold:

(i) The set of optimal solutions X∗ of (P) is nonempty.

(ii) There exists a constant L ∈ [0,∞) such that

|ϕ(x, y)− ϕ(x, y′)| ≤ L∥y − y′∥,

for all x ∈ X and y, y′ ∈ Y .

(iii) There exist constants N ∈ N and K ∈ [0,∞) such that (a) the set of optimal solutions

X∗
N of (PN) is nonempty for all N ≥ N , N ∈ N, and (b) for every N ≥ N , N ∈ N,

and y ∈ Y , there exists a y′ ∈ YN with ∥y − y′∥ ≤ K/N1/m.

Part b of item (iii) holds, for example, when Y is the unit hypercube in m dimensions

and the discretization scheme is uniform across Y , in which case N = 2m and K = m1/2; see

[24]. The next result is a simple extension of Lemma 3.4.3 in [8], where we use the notation

ψ∗ and ψ∗
N to denote the optimal values of (P ) and (PN), respectively.

Proposition 1. Suppose that Assumption 1 holds. Then,

0 ≤ ψ(x)− ψN(x) ≤ LK/N1/m, (2)

for all x ∈ X, N ∈ N, N ≥ N , where L, K, and N are as in Assumption 1.

Moreover,

0 ≤ ψ∗ − ψ∗
N ≤ LK/N1/m,

for all N ∈ N, N ≥ N .

We refer to

ψ(x)− ψN(x)

as the discretization error. In view of Proposition 1, the discretization error is of order

O(N−1/m) and the optimal value of (PN) tends to that of (P ) at least at rate N−1/m, as

N → ∞.

Unless X and ϕ(·, y), y ∈ YN , have special structures, one cannot expect to obtain a

globally optimal solution of (PN) in finite computing time. Hence, after a finite number

of iterations of an optimization algorithm applied to (PN), there is typically a remaining

optimization error. Specifically, given an optimization algorithm A for (PN), let x
n
N ∈ X be
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the iterate1 obtained by A after n iterations when applied to (PN). Then the optimization

error is defined as

ψN(x
n
N)− ψ∗

N .

The rate with which the optimization error decays as n grows depends on the rate of con-

vergence of A when applied to (PN). Here and throughout the paper, we only consider

algorithms that generate iterates in X exclusively, which is stated in the next assumption.

Assumption 2. We assume that if {xnN}∞n=0, N ∈ N, are generated by a given optimization

algorithm when applied to (PN), then x
n
N ∈ X for all N ∈ N and n = 0, 1, 2, ....

In view of the assumed simplicity of X, essentially all relevant optimization algorithms

satisfy Assumption 2. We also define the total error as

ψ(xnN)− ψ∗,

which measures the quality of the obtained solution after n iteration of the given optimization

algorithm applied to (PN). In view of Assumptions 1 and 2 and Proposition 1,

0 ≤ ψ(xnN)− ψ∗ = ψ(xnN)− ψN(x
n
N) + ψN(x

n
N)− ψ∗

N − ψ∗ + ψ∗
N

≤ LK/N1/m +∆n
N(A), (3)

where ∆n
N(A) is an upper bound on the optimization error after n iterations of optimization

algorithmA applied to (PN). Below, we discuss several different expressions for ∆
n
N(A) under

various assumptions about the optimization algorithm and effectively also about (PN). Since

it appears difficult to quantify the rate of convergence of the total error, we focus on the rate

of convergence of its upper bound in (3) as described next. The rate of convergence of that

bound provides a guaranteed minimum rate of convergence of the total error.

We see from (3) that different choices of N and n may result in different bounds on

the total error. Let b ∈ N be the computing budget available for executing n iterations of

the selected optimization algorithm on (PN). Clearly, the choice of N and n would typically

depend on b and we write Nb and nb to stress this dependence. We refer to {(nb, Nb)}∞b=1, with

nb, Nb ∈ N for all b ∈ N, as a discretization policy. A discretization policy specifies the level

of discretization of Y and the number of iterations of the optimization algorithm to execute

for any computing budget. If nb, Nb → ∞, as b → ∞, then the bound on the discretization

error vanishes; see Proposition 1. Assuming a convergent optimization algorithm to a global

minimizer of (PN), the optimization error and, presumably, the corresponding bound vanish

too. For a given optimization algorithm A and n,N ∈ N, we define the total error bound,

denoted by e(A, N, n), as the right-hand side of (3), i.e.,

e(A, n,N)
△
= LK/N1/m +∆n

N(A). (4)

1Iterates may depend on quantities such as algorithm parameters and the initial point used. In this paper, we

view the specification of such quantities as part of the algorithm and therefore do not reference them directly.

6



In this paper, we examine the rate at which the total error bound e(A, nb, Nb) vanishes

as b tends to infinity for different discretization policies {(nb, Nb)}∞b=1 and optimization algo-

rithms A. We identify optimal discretization policies, which as precisely stated below attain

the highest possible rate of convergence of the total error bound as the computing budget

tends to infinity for a given class of optimization algorithms.

Our analysis relies on the following assumption about the computational work needed

by an optimization algorithm to carry out n iterations on (PN).

Assumption 3. There exist constants M = M(A, d) ∈ (0,∞) and ν = ν(A) ∈ [1,∞) such

that the computational work required by a given optimization algorithm A to carry out n ∈ N
iterations on (PN) (of dimension d), N ∈ N, is no larger than nMN ν.

Assumption 3 holds with ν = 1 if the optimization algorithm A is a subgradient or

smoothing algorithm (see [24]) as each iteration of these algorithms requires the calculation of

ψN(x) at the current iterate x ∈ X (which involves finding the maximum over N scalars) and

the evaluation of gradients ∇xϕ(x, y) for one y ∈ YN in the subgradient method and for all

y ∈ YN in a smoothing algorithm. The constant M may be of order O(d) as ∇xϕ(x, y) ∈ Rd

or, possibly, proportional to another function of d depending on the structure of X and

ϕ(·, y), y ∈ Y . Other optimization algorithms for (P ) tend to result in larger values of ν

and M . For example, the sequential quadratic programming (SQP) algorithm in [11] and

the Pshenichnyi-Pironneau-Polak (PPP) algorithm [8, Section 2.4] for solving finite minimax

problems require the solution of one or two convex quadratic programs (QPs) with d + 1

variables and N linear inequality constraints in each iteration. A QP solver based on an

interior point method may need O(d2N) operations per iteration when N ≥ d [25]. The

number of iterations required by an interior point method on such QPs could be of order

O(
√
d+N) [26], or even less in practice when using a good method. Hence, M may be of

order O(d2), or possibly larger depending on the structure of X and ϕ(·, y), y ∈ Y , and ν

may be 1.5.

We note that computational savings have been observed empirically with the use of

active-set strategies when solving (PN) as well as any QP encountered in the process; see

[11, 12, 25, 27]. While of practical importance, in this paper we ignore this possibility as the

effect of active-set strategies in worst-case rate analysis is unclear.

In view of Assumption 3, we refer to a discretization policy {(nb, Nb)}∞b=1 as asymp-

totically admissible if nbMN ν
b /b → 1, as b → ∞. Clearly, an asymptotically admissible

discretization policy satisfies the computing budget in the limit as b tends to infinity. In the

next two sections, we determine optimal asymptotically admissible discretization policies

and corresponding rates of convergence of the total error bound under different assumptions

about the optimization algorithm and consequently the optimization error bound ∆nb
Nb
(A).
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3 Finite, Superlinear, Linear, and Sublinear Algorithms

We see from (4) that the total error bound consists of discretization and optimization error

bounds. The discretization error bound depends on the discretization level N , but not on the

optimization algorithm used; see Proposition 1. The optimization error bound depends on

the rate of convergence of the optimization algorithm used to solve (PN). In this section, we

consider four cases: First, we assume that the optimization algorithm solves (PN) in a finite

number of iterations. Second, we consider optimization algorithms with a superlinear rate

of convergence towards an optimal solution of (PN). Third, we deal with linearly convergent

optimization algorithms. Fourth, we assume a sublinearly convergent algorithm. We observe

that in practice an assumption about the rate of convergence of an optimization algorithm

when applied to (PN) would indirectly imply certain properties of (PN) such as convexity.

3.1 Finite Optimization Algorithm

Suppose that the optimization algorithm for solving (PN) is guaranteed to obtain an optimal

solution in a finite number of iterations independently of N as defined precisely next.

Definition 1. An optimization algorithm A converges finitely on {(PN)}∞N=N
when X∗

N is

nonempty for N ≥ N and there exist a constant n ∈ N such that for all N ≥ N , N ∈ N, a
sequence {xnN}∞n=0 generated by A when applied to (PN) satisfies x

n
N ∈ X∗

N for all n ≥ n.

No optimization algorithm converges finitely on {(PN)}∞N=N
without strong structural

assumptions on X, ϕ(·, ·), and Y such as linearity. In this paper, we are not interested in

instance of (PN) in the form of linear programs, for which finite convergence may be possible,

but include this case here as an “ideal” case. As we see below, the case provides an upper

bound on the rate of convergence of the total error bound using any optimization algorithm.

In view of Definition 1, a finitely convergent optimization algorithm Afinite on {(PN)}∞N=N

has no optimization error after a sufficiently large number of iterations. Hence, we define

∆n
N(Afinite)

△
= 0 and e(Afinite, n,N)

△
= LK/N1/m for n ≥ n and N ≥ N , where L and K are

as in Assumption 1 and n and N as in Definition 1. Naturally, one can in this case let the

portion of the computing budget allocated to discretization tend to 1, as b → ∞. The next

theorem states the rate of convergence of the total error bound in this case.

Theorem 1. Suppose that Assumption 1 holds and that Afinite is a finitely convergent algo-

rithm on {(PN)}∞N=N
, with N as in Assumption 1 and number of required iterations n as in

Definition 1. Suppose also that Afinite satisfies Assumptions 2 and 3. If {(nb, Nb)}∞b=1 is an

asymptotically admissible discretization policy with nb = n for all b ∈ N, then

lim
b→∞

log e(Afinite, nb, Nb)

log b
= − 1

mν
,

where ν is as in Assumption 3 and m is the uncertainty dimension.
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Proof. Since {(nb, Nb)}∞b=1 is asymptotically admissible, nbMN ν
b /b = nMN ν

b /b → 1, as

b → ∞, and we have that Nb → ∞, as b → ∞. Here M is as in Assumption 3. Hence, for

sufficiently large b, ∆nb
Nb
(Afinite) = 0 and e(Afinite, nb, Nb) = LK/N

1/m
b , where L and K are as

in Assumption 1. Consequently, for sufficiently large b,

log e(Afinite, nb, Nb) = log
LK(

b
nM

)1/νm (nMNν
b

b

)1/νm
= logLK − 1

νm
log b+

1

νm
log nM − 1

νm
log

nMN ν
b

b
.

Since nMN ν
b /b → 1 as b → ∞, the conclusion follows after dividing by log b and taking

limits.

Theorem 1 gives the asymptotic rate of decay of e(Afinite, nb, Nb) on a logarithmic scale

as b tends to infinity. We say in this case that the discretization algorithm and its total error

bound e(Afinite, nb, Nb) converge at rate b−1/(mν). Similar statements below are referenced

likewise.

For any discretization policy satisfying nbMN ν
b ≤ b for all b ∈ N and M ≥ 1, Nb ≤ b1/ν

for all b ∈ N. Hence, in view of Proposition 1, the optimal value of (PN) and the discretization

error converge at rate N
−1/m
b ≥ b−1/(mν), as b → ∞. Hence, the discretization error cannot

converge at a faster rate than that stipulated in Theorem 1. Since the total error bound

includes the discretization error bound (see (4)), the total error bound cannot converge

faster than the rate b−1/(mν) regardless of the optimization algorithm used to solve (PN).

The asymptotically admissible discretization policy stated in Theorem 1 is problematic to

implement as n may be unknown. Still, the resulting rate is an upper bound on the rate

that can be obtained by any optimization algorithm and therefore provides a benchmark for

comparison.

3.2 Superlinear Optimization Algorithm

We next consider superlinearly convergent optimization algorithms as defined as follows.

Definition 2. An optimization algorithm A converges superlinearly with order γ ∈ (1,∞) on

{(PN)}∞N=N
when X∗

N is nonempty for N ≥ N and there exist constants n ∈ N, c ∈ [0,∞),

and ρ ∈ [0, 1) such that c1/(γ−1)(ψN(x
n
N)− ψ∗

N) ≤ ρ and

ψN(x
n+1
N )− ψ∗

N

(ψN(xnN)− ψ∗
N)

γ
≤ c

for all n ≥ n, n ∈ N, and N ≥ N , N ∈ N.

Definition 2 requires the optimization algorithm to attain a superlinear rate of conver-

gence for sufficiently large n, which is typically the case for Newtonian methods applied to

strongly convex instance of (PN) with twice Lipschitz continuously differentiable functions.
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For example, the Polak-Mayne-Higgins Algorithm (see Algorithm 2.5.10 of [8]) attains a su-

perlinear rate of order γ = 3/2. The SQP algorithm of [11] also achieves a superlinear rate

of convergence, but its order appears unknown. Definition 2 requires that the superlinear

regime starts no later than an iteration number independent of N . Assuming that the algo-

rithm is initiated at a point independent of N , this is obtained in the Polak-Mayne-Higgins

Algorithm if the Lipschitz constant of ∇2
xxϕ(·, ·) with respect to its first argument is bounded

on X × Y and the eigenvalues of ∇2
xxϕ(x, y) for all x ∈ X and y ∈ Y are positive, bounded

from above, and away from zero.

The next lemma identifies a total error bound for a superlinearly convergent algorithm.

Lemma 1. Suppose that Assumption 1 holds and that Asuper is a superlinearly convergent

algorithm with order γ ∈ (1,∞) on {(PN)}∞N=N
, with N as in Assumption 1. Let {xnN}∞n=0

be the iterates generated by Asuper when applied to (PN), N ∈ N, N ≥ N . Suppose also that

Asuper satisfies Assumption 2. Then, there exist constants c ∈ [0, 1), κ ∈ [0,∞), and n ∈ N
such that

ψ(xnN)− ψ∗ ≤ cγ
n

κ+ LK/N1/m

for all n ≥ n, n ∈ N, and N ≥ N , N ∈ N, where L and K are as in Assumption 1 and m

is the uncertainty dimension.

Proof. Based on Proposition 1 and Definition 2, there exists an n ∈ N such that

ψ(xnN)− ψ∗

≤ ψN(x
n
N) + LK/N1/m − ψ∗

N

≤ c−1/(γ−1)(c1/(γ−1)(ψN(x
n
N)− ψ∗

N))
γn−n

+ LK/N1/m

= c−1/(γ−1)(c1/(γ−1)(ψN(x
n
N)− ψ∗

N))
γ−n

(c1/(γ−1)(ψN(x
n
N)− ψ∗

N))
γn

+ LK/N1/m

≤ c−1/(γ−1)ργ
−n

ργ
n

+ LK/N1/m

for N ≥ N , N ∈ N, and n ≥ n, n ∈ N, with ρ as in Definition 2. Consequently, the

conclusion holds with c = ρ and κ = c−1/(γ−1)ργ
−n
.

In view of Lemma 1, we adopt the upper bound on the optimization error

∆n
N(Asuper)

△
= cγ

n

κ

for a superlinearly convergent optimization algorithm Asuper on {(PN)}∞N=N
, where c and κ

are as in Lemma 1. Consequently, for n,N ∈ N, we define the total error bound

e(Asuper, n,N)
△
= cγ

n

κ+KL/N1/m.

The next result states that if we choose a particular discretization policy, then a superlinearly

convergent optimization algorithm results in the same rate of convergence of the total error

bound as a finitely convergent algorithm. Hence, the policy stipulated next is optimal in the

sense that no other policy guarantees a better rate of convergence.
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Theorem 2. Suppose that Asuper satisfies the assumptions of Lemma 1 and, in addition,

Assumption 3 holds. If {(nb, Nb)}∞b=1 is an asymptotically admissible discretization policy

with nb/ log log b→ a ∈ (1/ log γ,∞), then

lim
b→∞

log e(Asuper, nb, Nb)

log b
= − 1

mν
,

where ν is as defined in Assumption 3 and m is the uncertainty dimension.

Proof. Straightforward algebraic manipulation gives that

KL

N1/m

= exp

(
logKL− 1

mν
log

(
nMN ν

b

)
− 1

mν
log

(
b

log log b

)
− 1

mν
log

(
log log b

nM

))
= exp

(
logKL− 1

mν
log

(
nMN ν

b

)
− 1

mν
log b+

1

mν
log log log b− 1

mν
log

(
log log b

nM

))
,

where M is as in Assumption 3, and

κcγ
n

= exp

(
log κ+ γ

n
log log b

log log b log c

)
= exp

(
log κ+ log c(log b)

n
log log b

log γ

)
.

Hence,

e(Asuper, n,N)

= exp

(
−1

mν
(log b− log log b)

)[
exp

(
logKL− 1

mν
log

(
nMN ν

b

)
− 1

mν
log

(
log log b

nM

))
+ exp

(
log κ+ log b

(
1

mν
+ log c(log b)

n
log log b

log γ−1

)
− 1

mν
log log log b

)]
.

Consequently,

log e(Asuper, n,N)

log b
= − 1

mν
+

1

mν

log log b

log b
(5)

+ log

[
exp

(
logKL− 1

mν
log

(
nMN ν

b

)
− 1

mν
log

(
log log b

nM

))
+ exp

(
log κ+ log b

(
1

mν
+ log c(log b)

n
log log b

log γ−1

)
− 1

mν
log log log b

)]
/ log b.

Since nbMN ν
b /b → 1, log log b/nb → 1/a, and, due to the facts that a log γ − 1 > 0 and

log c < 0, log c(log b)
nb

log log b
log γ−1 → −∞, as b → ∞, we obtain that the expression in

brackets in (5), with n and N replaced by nb and Nb, respectively, tends to a constant as

b→ ∞. The conclusion then follows from taking limits of the other terms as well.

It is clear from Theorem 2 and its proof that other choices of discretization policy than

the one recommended may result in significant slower rate of convergence of the total error

bound as the computing budget tends to infinity.
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3.3 Linear Optimization Algorithm

We next consider a linearly convergent optimization algorithm defined as follows.

Definition 3. An optimization algorithm A converges linearly on {(PN)}∞N=N
when X∗

N is

nonempty for N ≥ N and there exist constants n ∈ N and c ∈ [0, 1) such that

ψN(x
n+1
N )− ψ∗

N

ψN(xnN)− ψ∗
N

≤ c

for all n ≥ n, n ∈ N, and N ≥ N , N ∈ N.

The definition requires that the rate of convergence coefficient c holds for all N suffi-

ciently large. This is satisfied, for example, in the PPP algorithm when the eigenvalues of

∇2
xxϕ(x, y) for all x ∈ X and y ∈ Y are positive, bounded from above, and away from zero

[8, Section 2.4].

Lemma 2. Suppose that Assumption 1 holds and that Alinear is a linearly convergent algo-

rithm on {(PN)}∞N=N
, with N as in Assumption 1. Let {xnN}∞n=0 be the iterates generated

by Alinear when applied to (PN), N ∈ N, N ≥ N . Suppose also that there exists a constant

C ∈ R such that ψN(x
n
N) ≤ C for all n ∈ N and N ≥ N , N ∈ N, and that Alinear satisfies

Assumption 2. Then, there exists a constant κ ∈ [0,∞) such that

ψ(xnN)− ψ∗ ≤ cnκ+ LK/N1/m

for all n ≥ n and N ≥ N , where c and n are as in Definition 3, and K and L are as in

Assumption 1.

Proof. Based on Proposition 1 and the fact that Alinear is linearly convergent, we obtain

that

ψ(xnN)− ψ∗ ≤ ψN(x
n
N) + LK/N1/m − ψ∗

N

≤ cn−n[ψN(x
n
N)− ψ∗

N ] + LK/N1/m

≤ cn(c−n(C − ψ∗ + LK/N
1/m

)) + LK/N1/m.

Hence, the results hold with κ = (c−n(C − ψ∗ + LK/N
1/m

)).

We note that the assumption ψN(x
n
N) ≤ C for all n ∈ N and N ∈ N, N ≥ N , in Lemma

2 is rather weak and is satisfied for example if the optimization algorithm starts with x0 ∈ X

regardless of N and is a descent algorithm because then ψN(x
n
N) ≤ ψN(x

0) ≤ ψ(x0). In view

of Lemma 2, we define the optimization error bound for a linearly convergence optimization

algorithm Alinear to be

∆n
N(Alinear)

△
= cnκ,

where c and κ are as in Lemma 2, and the total error bound for n,N ∈ N to be

e(Alinear, n,N)
△
= cnκ+ LK/N1/m.
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The next result states that a linearly convergent optimization algorithm also attains the

best possible rate of convergence of the total error bound given in Theorems 1 and 2 under

a suitable choice of {(nb, Nb)}∞b=1.

Theorem 3. Suppose that Alinear satisfies the assumptions of Lemma 2 and, in addition,

Assumption 3 holds. If {(nb, Nb)}∞b=1 is an asymptotically admissible discretization policy with

nb/ log b → a > (−1/(mν log c),∞), where c and ν are as in Definition 3 and Assumption

3, respectively, then

lim
b→∞

log e(Alinear, nb, Nb)

log b
= − 1

mν
.

Proof. Algebraic manipulations give that

KL

N1/m
= exp

(
logKL− 1

mν
log

(
nMN ν

b

)
− 1

mν
log

(
log b

nM

)
− 1

mν
log b+

1

mν
log log b

)
,

where M is as in Assumption 3, and

cnκ = exp

(
log κ+ n log c

)
= exp

(
log κ+ log b(n/ log b) log c

)
.

Hence,

e(Alinear, n,N)

= exp

(
−1

mν
(log b− log log b)

)[
exp

(
log κ+

(
n

log b
log c+

1

mν

)
log b (6)

− 1

mν
log log b

)
+ exp

(
logKL− 1

mν
log

(
nMN ν

b

)
− 1

mν
log

(
log b

nM

))]
.

Since a > −1/(mν log c), nb log c/ log b + 1/(mν) → a log c + 1/(mν) < 0, as b → ∞.

Consequently, the expression in the brackets in (6), with n and N replaced by nb and Nb,

respectively, tends to exp(logKL− (1/(mν)) log(1/(aM))), as b→ ∞. The conclusion then

follows from (6) after taking logarithms, dividing by log b, and taking limits.

3.4 Sublinear Optimization Algorithm

We next consider the situation when the optimization algorithm for solving (PN) is sublin-

early convergent as given in the following definition.

Definition 4. An optimization algorithm A converges sublinearly with degree γ ∈ (0,∞) on

{(PN)}∞N=N
when X∗

N is nonempty for N ≥ N and there exists a constant C ∈ [0,∞) such

that

ψN(x
n
N)− ψ∗

N ≤ C/nγ

for all n ∈ N and N ≥ N , N ∈ N.

13



The subgradient method is sublinearly convergent in the sense of Definition 4 with

γ = 1/2 and C = DXLϕ when (PN) is convex, where DX is the diameter of X and Lϕ

is a Lipschitz constant of ϕ(·, y) on X independent of y ∈ Y ; see [28, pp. 142-143]. In

view of Definition 4, we define the optimization error bound for a sublinearly convergence

optimization algorithm Asublin to be

∆n
N(Asublin)

△
= C/nγ

and the total error bound for n,N ∈ N to be

e(Asublin, n,N)
△
= C/nγ + LK/N1/m.

The next result gives an optimal discretization policy for a sublinearly convergent opti-

mization algorithm and also shows the corresponding rate of convergence of the total error

bound.

Theorem 4. Suppose that Assumption 1 holds and that Asublin is a sublinearly convergent

algorithm with degree γ ∈ (0,∞) on {(PN)}∞N=N
, with N as in Assumption 1. Suppose

also that Asublin satisfies Assumptions 2 and 3, and that {(nb, Nb)}∞b=1 is an asymptotically

admissible discretization policy. Then,

lim inf
b→∞

log e(Asublin, nb, Nb)

log b
≥ − 1

mν + 1/γ
,

where ν is as in Assumption 3 and m is the uncertainty dimension.

Moreover, if nb/b
1/(mνγ+1) → a ∈ (0,∞), as b→ ∞, then

lim
b→∞

log e(Asublin, nb, Nb)

log b
= − 1

mν + 1/γ
.

Proof. For any n,N ∈ N,

log e(Asublin, n,N) = log(C/nγ +KL/N1/m)

≥ log(max{C/nγ, KL/N1/m})
= max{logC − γ log n, logKL− (1/m) logN}.

Let {(nb, Nb)}∞b=1 be an arbitrary asymptotically admissible discretization policy. If nb ≥
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b1/(mνγ+1), then

log e(Asublin, nb, Nb)

log b
≥

logKL− 1
m
logNb

log b

=
logKL− 1

m
log
(

Nν
b nb

b
b
nb

)1/ν
log b

≥
logKL− 1

mν
log
(

Nν
b nb

b
bmνγ/(mνγ+1)

)
log b

=
logKL− 1

mν
log
(

Nν
b nb

b

)
− 1

mν
log bmνγ/(mνγ+1)

log b

=
logKL− 1

mν
log
(

Nν
b nb

b

)
log b

− 1

mν + 1/γ
.

If nb < b1/(mνγ+1), then

log e(Asublin, nb, Nb)

log b
≥ logC − γ log nb

log b

>
logC − γ log b1/(mνγ+1)

log b

=
logC

log b
− 1

mν + 1/γ
.

Hence, for any b ∈ N,

log e(Asublin, nb, Nb)

log b
≥ min

 logKL− 1
mν

log
(

Nν
b nb

b

)
log b

,
logC

log b

− 1

mν + 1/γ
.

The first result then follows by taking limits as b→ ∞, utilizing the fact thatNν
b nb/b→ 1/M ,

as b→ ∞, where M is as in Assumption 3.

Next, let {(nb, Nb)}∞b=1 be an asymptotically admissible discretization policy satisfying

nb/b
1/(mνγ+1) → a ∈ (0,∞), as b→ ∞. Then, by algebraic manipulation,

e(Asublin, nb, Nb) =
C

nγ
b

+
KL

N
1/m
b

=

(
C
b1/(mνγ+1)

nb

+KL

(
b

Nν
b nb

)1/(mν) ( nb

b1/(mνγ+1)

)1/(mν)
)
b−1/(mν+1/γ).

Since

C
b1/(mνγ+1)

nb

+KL

(
b

Nν
b nb

)1/(mν) ( nb

b1/(mνγ+1)

)1/(mν)

→ C/a+KL(Ma)1/(mν),
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as b→ ∞, where M as in Assumption 3, and

log e(Asublin, nb, Nb)

log b
= log

(
C
b1/(mνγ+1)

nb

+KL

(
b

N ν
b nb

)1/(mν) ( nb

b1/(mνγ+1)

)1/(mν)
)
/ log b

+ −1/(mν + 1/γ),

the second part of the theorem follows after taking limits as b→ ∞.

We see from Theorem 4 that the rate of convergence of the total error bound in the

case of a sublinearly convergent optimization algorithm is apparently worse than the best

possible achievable by finite, superlinear, and linear algorithms (see Theorems 1, 2, and 3),

even for the optimal choice of discretization policy given by the second part of the theorem.

Hence, there is a nontrivial computational cost of optimization in this case. As expected, if γ

tends to infinity, then the rate in the sublinear case, under the optimal discretization policy,

tends to that of the finite, superlinear, and linear cases. We note however that ν is typically

smaller in the case of a sublinear algorithm than for superlinear and linear algorithms; see

the discussion after Assumption 3. For example, in the case of the subgradient method,

ν = 1, and, since γ = 1/2 in that case, we obtain from Theorem 4 a rate of convergence

of the total error bound of b−1/(m+2). In contrast, for a linearly convergent optimization

algorithm with ν = 1.5, we obtain a rate of convergence of the total error bound of b−2/(3m).

Hence, for all uncertainty dimensions m < 4, the linear optimization algorithm results in a

better rate of convergence than the sublinear algorithm. For m = 4, the rates are the same.

For larger m, the sublinear algorithm obtains the better rate. Consequently, the results of

this section indicate that the intuitive inclination of using a superlinear or linear algorithm

instead of a sublinear one within a discretization algorithm may not always be supported by

the above analysis. The next section examines one particular optimization algorithm based

on exponential smoothing that behaves similarly to a sublinear algorithm.

4 Smoothing Optimization Algorithm

In this section, we consider an optimization algorithm for solving (PN) based on exponential

smoothing of ψN(·). Instead of solving (PN) directly using a finite minimax algorithm as

discussed in the previous section, the exponential smoothing algorithm solves (PN) by solving

the smooth approximate problem

(PNp) min
x∈X

ψNp(x),

where p > 0 is a smoothing parameter and

ψNp(x)
△
=

1

p
log

(∑
y∈YN

exp (pϕ(x, y))

)
. (7)
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The function ψNp(·) is a smooth approximation of ψN(·) first proposed in [29] and examined

in [12, 27, 30–33] for solving finite minimax problem. It is well-known that

0 ≤ ψNp(x)− ψN(x) ≤ logN/p, (8)

for all x ∈ Rd, N ∈ N, and p > 0; see for example [12]. Consequently, a near-optimal solution

of (PN) can be obtained by solving (PNp) for a sufficiently large p. A main advantage of

the smoothing algorithm is that when ϕ(·, y) is smooth for all y ∈ YN , ψNp(·) is smooth

and (PNp) is solvable by unconstrained smooth optimization algorithms (if X = Rd) or by

smooth optimization algorithm for simple constraints (if X ⊂ Rd). Hence, the smoothing

algorithm avoids solving large-scale quadratic programs as in the case of SQP and PPP

minimax algorithms (see for example [11] and [8, Section 2.4]). In fact, each iteration of the

smoothing algorithm may only require the evaluation of ϕ(·, y) and ∇xϕ(·, y), y ∈ YN , at the

current iterate (and at line search points), which imposes a computational cost proportional

to N per iteration. Hence, it is reasonable to assume that ν = 1 in Assumption 3 for the

smoothing algorithm.

Specifically, for a given N ∈ N, we consider the following smoothing algorithm for solv-

ing (PN):

Optimization Algorithm Asmooth for Solving (PN).

Data. n ∈ N and p > 0.

Step 1. Construct iterates {xiNp}ni=0 ⊂ Rd by applying n iterations of an optimization algo-

rithm to (PNp).

This simple smoothing algorithm Asmooth can be extended to include adaptive adjust-

ment of the smoothing parameter p (see for example [12]), but we here focus on Asmooth.

Discretization of Y combined with exponential smoothing for the solution (P ) is pro-

posed in [34], where proof of convergence is provided, but without a rate of convergence

analysis. In this section, we determine the rate of convergence of this approach. Specifically,

we consider the solution of (P ) by discretization of Y , as in the previous sections, followed

by the application of Asmooth to (PN). While we above consider discretization policies of the

form {(nb, Nb)}∞b=1, we now also need to consider a smoothing policy {pb}∞b=1, with pb > 0, for

all b ∈ N. A smoothing policy specifies the smoothing parameter to be used in Asmooth given

a particular computing budget b. The discretization policy gives the number of iterations to

carry out in Asmooth as well as the level of discretization.

We assume that Assumption 3 holds for Asmooth regardless of p, i.e., the computational

work to carry out n iteration of Asmooth is independent of p. In view of (7), the value of p

does not influence the work to compute ψNp(x) and its gradient and hence this assumption

is reasonable. However, as shown empirically in [32] and analytically in [12], a large value of

p results in ill-conditioning of (PNp) and slow rate of convergence of optimization algorithms
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applied to that problem. We adopt the following assumption, which, in part, is motivated

by results in [12] as discussed subsequently.

Assumption 4. Suppose that there exists an N ∈ N such that if {xiNp}ni=0 is constructed

by optimization algorithm Asmooth with data n ∈ N and p > 0 when applied to (PN), N ∈
N, N ≥ N , then the following holds:

(i) xiNp ∈ X for all i = 0, 1, ..., n, N ∈ N, N ≥ N , and p > 0,

(ii) X∗
N is nonempty for N ∈ N, N ≥ N , and

(iii) there exist constants k ∈ (0, 1) and κ ∈ [0,∞) such that

ψN(x
n
Np)− ψ∗

N ≤
(
1− k

p

)n

κ+
2 logN

p
(9)

for any n,N ∈ N, N ≥ N and p ≥ 1.

Part (i) of Assumption 4 requires that Algorithm Asmooth generates feasible iterates,

which is easily achieved since X is either Rd or a simple closed convex subset. Part (iii) is

stronger and stipulates that the “optimization error” after executing Algorithm Asmooth is

bounded by the sum of two terms. The first term bounds the error caused by “incomplete”

optimization and vanishes as n → ∞. The second term bounds the smoothing error and

tends to zero as p → ∞; see (8). For a fixed p ≥ 1, the first term indicates a linear rate of

convergence as n → ∞. However, the rate of convergence coefficient tends to 1 as p grows,

reflecting the increasing ill-conditioning of (PNp). Hence, Algorithm Asmooth may converge

only sublinearly if p → ∞. If Step 1 of Algorithm Asmooth utilizes the steepest descent

or projected gradient methods to solve (PNp), then Assumption 4 holds under standard

assumptions as stated next.

Proposition 2. Suppose that (i) ϕ(·, ·) is twice continuously differentiable on X × Y , (ii)

there exists a constant λ ∈ (0,∞) such that

λ∥z∥2 ≤ ⟨z,∇2
xxϕ(x, y)z⟩,

for all x ∈ X, z ∈ Rd, and y ∈ Y , (iii) Step 1 of Algorithm Asmooth utilizes either the

steepest descent method with Armijo step size rule (see Algorithm 1.3.3 in [8]) if X = Rd or

otherwise the projected gradient method with Armijo step size rule (see Algorithm 1.3.16 in

[8]), (iv) there exists a constant C ∈ [0,∞) such that the initial iterate x0Np ∈ X of Step 1

of Algorithm Asmooth satisfies ψ(x0Np) ≤ C for all N ∈ N and p > 0, and (v) Assumption 1

holds. Then, Assumption 4 holds with N as in Assumption 1.

Proof: Part (i) of Assumption 4 follows trivially by the choice of optimization algorithm in

Step 1 of Algorithm Asmooth. Part (ii) of Assumption 4 is a direct consequence of Assumption

1. We next consider part (iii).

Using the same arguments as in Lemma 3.1 of [12], we obtain that ψNp(·) is twice

continuously differentiable and

λ∥z∥2 ≤
⟨
z,∇2ψNp(x)z

⟩
, (10)
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for any x ∈ X, ∈ Rd, N ∈ N, and p > 0. Moreover, a slight generalization of Lemma 3.2 in

[12] yields that for every bounded set S ⊆ X, there exists an MS <∞ such that

⟨z,∇2ψNp(x)z⟩ ≤ pMS∥z∥2, (11)

for all x ∈ S, z ∈ Rd, N ∈ N, and p ≥ 1.

The steepest descent method with Armijo step size rule and the projected gradient

method with Armijo step size rule have linear rate of convergence in function values under

strong convexity with rate coefficient 1−ξλmin/λmax, where ξ ∈ (0, 1) (which depends on the

method) and λmax ≥ λmin > 0 are upper and lower bounds on the eigenvalues of the Hessian

of the objective function on a sufficiently large subset of Rd; see Theorems 1.3.7 and 1.3.18

in [8]. Hence, in view of (10) and (11), pMS and λ provide these upper and lower bounds in

the case of (PNp) and therefore

ψNp(x
n+1
Np )− ψ∗

Np ≤
(
1− k

p

)
(ψNp(x

n
Np)− ψ∗

Np)

for all n,N ∈ N and p ≥ 1, with k = ξλ/MS ∈ (0, 1). From (8), we then obtain that

ψN(x
n
Np)− ψ∗

N ≤ ψNp(x
n
Np)− ψ∗

Np + logN/p

≤
(
1− k

p

)n

(ψNp(x
0
Np)− ψ∗

Np) +
logN

p

≤
(
1− k

p

)n

(ψN(x
0
Np)− ψ∗

N) +
2 logN

p

≤
(
1− k

p

)n

(ψ(x0Np)− ψ∗ + LK) +
2 logN

p

for all n,N ∈ N and p ≥ 1, where we use the fact that −ψ∗
N ≤ −ψ∗ + LK for all N ≥ N ,

N ∈ N, in view of Proposition 1. Since we assume that ψ(x0Np) ≤ C for all N ∈ N and p > 0,

the conclusion follows with κ = C − ψ∗ + LK.

We note that assumption (iv) in Proposition 2 is rather weak and is satisfied, for example,

if the optimization algorithm used to solve (PNp) in Step 1 of Algorithm Asmooth is initialized

with the same iterate regardless of N ∈ N and p > 0. The next result gives a total error

bound for Algorithm Asmooth under Assumption 4.

Lemma 3. Suppose that Assumptions 1 and 4 hold. If {xnNp}∞n=0 is generated by Algorithm

Asmooth, then

ψ(xnN)− ψ∗ ≤
(
1− k

p

)n

κ+
LK

N1/m
+

2 logN

p

for all n,N ∈ N, N ≥ N and p ≥ 1, where N , k, and κ are as in Assumption 4 and L and

K as in Assumption 1.

Proof. The conclusion follows directly from Proposition 1 and Assumption 4.
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In view of Lemma 3, we define the optimization error bound for Algorithm Asmooth to

be

∆n
Np(Asmooth)

△
=

(
1− k

p

)n

κ+
2 logN

p
(12)

and the total error bound for n,N ∈ N and p > 0 to be

e(Asmooth, n,N, p)
△
=

(
1− k

p

)n

κ+
LK

N1/m
+

2 logN

p
.

Before we proceed with the main result of this section, we need the following trivial fact.

Lemma 4. For x ∈ [0, 1/2], −2x ≤ log(1− x) ≤ −x.

Theorem 5. Suppose that Assumptions 1, 3, and 4 hold and that {(nb, Nb)}∞b=1 is an asymp-

totically admissible discretization policy and {pb}∞b=1 is a smoothing policy with pb ≥ 1 for all

b ∈ N. Then,

lim inf
b→∞

log e(Asmooth, nb, Nb, pb)

log b
≥ − 1

mν + 1
,

where ν is as defined in Assumption 3 and m is the uncertainty dimension.

Moreover, if pb/b
δα → a ∈ (0,∞), with δ ∈ (0, 1) and α = 1/(δmν + 1), and nb/b

α →
a′ ∈ (0,∞), then

lim
b→∞

log e(Asmooth, nb, Nb, pb)

log b
= − 1

mν + 1/δ
.

Proof. We first consider part one. If Nb is bounded as b → ∞, then e(Asmooth, nb, Nb, pb)

does no vanish as b → ∞ and the conclusion of part one follows trivially. Hence, suppose

there exists a b0 ∈ N such that Nb ≥ 3 for all b ≥ b0. Then, algebraic manipulations and

Lemma 4 give that for b ≥ b0,

log e(Asmooth, nb, Nb, pb)

= log(enb log(1−k/pb)+log κ + e−(1/m) logNb+logLK + e− log pb+log logNb+log 2) (13)

≥ log(e−2knb/pb+log κ + e−(1/m) logNb+logLK + e− log pb+log logNb+log 2)

≥ log(max{e−2knb/pb+log κ, e−(1/m) logNb+logLK , e− log pb+log logNb+log 2})
= max{−2knb/pb + log κ,−(1/m) logNb + logLK, − log pb + log logNb + log 2}.

We consider three cases. First, if nb ≥ b1/(mν+1), b ≥ b0, then

log e(Asmooth, nb, Nb, pb)

log b
≥ −(1/m) logNb + logLK

log b

=
−(1/(mν)) log(Nν

b nb/b)− (1/(mν)) log(b/nb) + logLK

log b

≥ −(1/(mν)) log(Nν
b nb/b)− (1/(mν)) log bmν/(mν+1) + logLK

log b

=
−(1/(mν)) log(Nν

b nb/b)

log b
− 1

mν + 1
+

logLK

log b
.
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Second, if n < b1/(mν+1) and p ≤ b1/(mν+1), b ≥ b0, then

log e(Asmooth, nb, Nb, pb)

log b
≥ − log pb + log logNb + log 2

log b

≥ − log pb
log b

≥ − 1

mν + 1
.

Third, if n < b1/(mν+1) and p > b1/(mν+1), b ≥ b0, then

log e(Asmooth, nb, Nb, pb)

log b
≥ −2knb/pb + log κ

log b

>
−2k + log κ

log b
.

Hence, for any ϵ > 0, there exists a b1 ≥ b0 such that

log e(Asmooth, nb, Nb, pb)

log b
≥ − 1

mν + 1
− ϵ

for all b ∈ N, b ≥ b1. Since ϵ is arbitrary, the conclusion of part one follows.

We next consider part two. Let b0 ∈ N be such that Nb ≥ 3 for all b ∈ N, b ≥ b0. For

b ≥ b0, we define

e(Asmooth, nb, Nb, pb)
△
= exp

(
− 2knb

pb
+ log κ

)
+ exp

(
− 1

m
logNb + logLK

)
+ exp

(
− log pb + log logNb + log 2

)
.

We define e(Asmooth, nb, Nb, pb) identically except with 2k replaced by k. Then, using Lemma

4 and similar arguments as in (13), we obtain that

e(Asmooth, nb, Nb, pb) ≤ e(Asmooth, nb, Nb, pb) ≤ e(Asmooth, nb, Nb, pb) (14)

for all b ∈ N, b ≥ b0. We next consider e(Asmooth, nb, Nb, pb) and find that

−knb

pb
= −knb

bα
bδα

pb
bα(1−δ),

− 1

m
logNb = −1− α

mv
log b− 1

m
log

(
Nν

b nb

b

)1/ν

− 1

m
log

(
bα

nb

)1/ν

,

− log pb = −δα log b− log
pb
bδα

,

and

log logNb = log log b+ log

(
log(N ν

b nb/b)
1/ν

log b
+

log(bα/nb)
1/ν

log b
+

1− α

ν

)
,
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for all b ∈ N, b ≥ b0. Using the above expressions, we obtain that for all b ∈ N, b ≥ b0,

e(Asmooth, nb, Nb, pb) = exp

(
− δ

δmν + 1
log b

)
(T1(b) + T2(b) + T3(b)), (15)

where

T1(b)
△
= exp

(
− k

nb

bα
bδα

pb
bα(1−δ) +

δ

δmν + 1
log b+ log κ

)
,

T2(b)
△
= exp

(
α− 1

mν
log b− 1

mν
log

Nν
b nb

b
− 1

mν
log

bα

nb

+ logLK +
δ

δmν + 1
log b

)
,

and

T3(b)
△
= exp

(
− δα log b+

δ

δmν + 1
log b− log

pb
bδα

+ log log b

+ log

(
log(N ν

b nb/b)
1/ν

log b
+

log(bα/nb)
1/ν

log b
+

1− α

ν

)
+ log 2

)]
.

Since nb/b
α → a′, bδα/pb → 1/a, as b→ ∞, α = 1/(δmν + 1), and δ ∈ (0, 1), we obtain that

T1(b) → 0 as b→ ∞. We also obtain that

T2(b) = exp

(
− 1

mν
log

N ν
b nb

b
− 1

mν
log

bα

nb

+ logLK

)
→ exp

(
− 1

mν
log

1

M
− 1

mν
log

1

a′
+ logLK

)
,

as b → ∞, where M is as in Assumption 3. Moreover, we find that there exist constants

b1 ≥ b0 and C ∈ [0,∞) such that

T3(b)

= exp

(
− log

pb
bδα

+ log log b+ log

(
log(Nν

b nb/b)
1/ν

log b
+

log(bα/nb)
1/ν

log b
+

1− α

ν

)
+ log 2

)
≤ Celog log b = C log b

for all b ≥ b1, b ∈ N. Consequently, there exist constants C ′ ∈ (C,∞) and b2 ∈ N, b2 ≥ b1,

such that for all b > b2,

T1(b) + T2(b) + T3(b) ≤ C ′ log b

for all b ∈ N, b ≥ b2. Hence, for b ≥ b2,

log e(Asmooth, nb, Nb, pb)

log b
≤ log(e−δ/(δmν+1) log bC ′ log b)

log b

= − δ

δmν + 1
+

C ′

log b
+

log log b

log b
→ − 1

mν + 1/δ
,

as b→ ∞. Repeating the same argument for e(Asmooth, nb, Nb, pb), we obtain that

lim inf
b→∞

log e(Asmooth, nb, Nb, pb)

log b
≥ − 1

mν + 1/δ
.
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Hence, the conclusion of part two of the theorem follows from (14).

We see from Theorem 5 that Algorithm Asmooth is competitive with any sublinear opti-

mization algorithm of degree γ ∈ (0, 1] (such as the subgradient method with γ = 1/2) as

δ ∈ (0, 1) can be selected arbitrarily close to one. While the best possible rate of b−1/(mν)

is not attainable even for the optimal discretization and smoothing policy specified in The-

orem 5, Algorithm Asmooth has ν = 1 and therefore may still be competitive under certain

circumstances.

5 Conclusions

In this paper, we examined the rate of convergence of discretization algorithms for semi-

infinite minimax problems as a computing budget b tends to infinity. These algorithms

approximately solve finite minimax problems as subproblems and we study the rates resulting

from the use of various classes of optimization algorithms for this purpose. We find that in the

case of superlinear and linear optimization algorithms, the best possible rate of convergence

is b−1/(mν), where m is the uncertainty dimension in the semi-infinite minimax problem and

ν is a positive parameter related to the computational work per iteration in the optimization

algorithms. The best rate is attained with a particular optimal discretization policy identified

in the paper and cannot be improved upon due to the unavoidable discretization error.

Other policies may result in substantially slower rates. In the case of sublinear optimization

algorithms, with optimization error of order O(1/nγ), γ > 0, after n iterations, the best

possible rate of convergence is b−1/(mν+1/γ), which is attained using an optimal discretization

policy constructed in the paper. If a smoothing optimization algorithm solves the finite

minimax problems, then the best possible rate of convergence is b−1/(mν+1), which one can

get arbitrarily close to using a specific discretization and smoothing policy.

The algorithm parameter ν varies; superlinear and linear finite minimax algorithms may

have ν = 1.5 and sublinear and smoothing algorithms ν = 1. Consequently, under these

assumptions, a sublinear algorithm with γ = 1/2 as in the case of the subgradient method

obtains a rate of convergence of b−1/(m+2), which is better than b−2/(3m) obtained by super-

linear and linear algorithms for m > 4. For m = 4, the rates are identical. The smoothing

algorithm obtains essentially b−1/(m+1), which is better than superlinear and linear algorithms

for m > 2. For m = 2 the rates are identical. The analysis of this paper therefore indicates

that inexpensive sublinear and, in particular, smoothing algorithms may be preferred to solve

the large-scale finite minimax problems arising in discretization algorithms for semi-infinite

minimax problems.
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